The Crystal and Molecular Structure of Cellobiose

By Robert A. Jacobson
School of Chemistry, University of Minnesota, Minneapolis 14, Minnesota, U.S.A. and Department of Chemistry, Princeton University, Princeton, New Jersey, U.S.A.
and Jeffrey A. Wunderlich* and William N. Lipscomb
School of Chemistry, University of Minnesota, Minneapolis 14, Minnesota, U.S.A. and Department of Chemistry, Harvard University, Cambridge 38, Massachusetts, U.S.A.

(Received 5 August 1960)

Abstract

The structure of β-cellobiose has been determined by three-dimensional Patterson superposition techniques, in which an improved sharpening procedure based on the gradient of the electron density function was used to increase resolution.

The 1:4 linking of the two 'chair' β-glucopyranose residues is confirmed. The molecule has an internal hydrogen bond, $\mathrm{O}_{3}^{\prime}-\mathrm{H} \cdots \mathrm{O}_{5}$ of length $2 \cdot 80 \AA$, and $\mathrm{C}-\mathrm{O}-\mathrm{C}$ angles within the rings of 117° 115°, significantly greater than the tetrahedral angle. It is of interest in connection with the proposed structures of forms of cellulose that the molecule has the bent conformation with the glucose residues somewhat twisted relative to one another, and that the isolated molecule would not have a two-fold axis. All OH hydrogens seem to be involved in the hydrogen bonding scheme in the crystal.

Introduction

Of the several different modifications of cellulose, natural cellulose I and regenerated cellulose II are most commonly studied, although other forms are known (Ellefsen, Gjønnes \& Norman, 1959; Marrinan \& Mann, 1956). Cellulose II, obtained from cellulose I by esterification and then saponification, are different forms of polymers of cellobiose. These two forms of cellulose differ both in the mutual arrangement of chains and, quite probably, in the relative spacial arrangements of glucose residues in the chain (Petitpas \& Méring, 1956). Owing to the method of preparation of cellobiose as a degradation product of cellulose I under fairly drastic conditions it seems certain that cellobiose is most closely related in structural detail to cellulose II, but it may also be of interest in connection with the structure of natural cellulose itself (Liang \& Marchessault, 1959).

Some of the different structure models for cellulose II have been summarized by Bjørnhaug, Ellefson \& Tønnesen (1953). Model l is the 'straight' or extended model proposed (Meyer \& Misch, 1937) on the basis of X-ray fiber diagrams for cellulose I but criticized on the basis of infrared studies (Liang \& Marchessault, 1959). Model 2 is a 'straight' model proposed by Pierce (1946) for cellulose II. Model 3 is also a straight model intermediate between 1 and 2 , but with a reasonable bond angle of about 120° at the glucosidic oxygen (Bjørnhaug et al., 1953). Model 4 has the boat form of the pyranose ring and is eliminated by our study.

[^0]Models 5, 6, and 7 are all somewhat bent chains first proposed by Hermans (1949) and by Hermans, de Booys \& Maan (1943), and used by Carslstrom (1957) for the structure of chitin, but they differ in whether there is a minor rotation (5), a medium rotation (6), or a maximum rotation (7) as one goes from one glucose unit to the next. All of these seven models preserve the $10 \cdot 3 \AA$ repeat of the fiber patterns of the various forms of cellulose. The structure of cellobiose, as described below, is perhaps between models 5 and 6 , with an angle of very roughly 26° between the mean planes of the two six-membered rings. As will be shown later this configuration is determined to a large extent by the intramolecular hydrogen bond. The nearly perpendicular mutual orientation of the mean planes of the glucose rings as suggested by Bjornhaug et al. (1953) for cellulose II is not present in cellobiose, but our results do suggest that the somewhat bent conformation rather than the extended or straight conformation for the chain is more likely.

The method of solution of this structure, which contains no heavy atom, is an example of the power of superposition techniques in three dimensions when carried out with the aid of a computer. An important feature is the increase in resolution of the Patterson function by the use of the gradient of the electron density function. This method provides a physical basis for the $\sin ^{2} \theta$ type of sharpening function as used by Schomaker \& Shoemaker (Lipson \& Cochran, 1953), but, more important, allows one to obtain sharper peaks without spurious background when an appropriate sum of the gradient Patterson function and the ordinary sharpened Patterson function is taken. A brief note of this study of the cellobiose
structure has appeared (Jacobson, Wunderlich \& Lipscomb, 1959).

Experimental

Truncated square pyramidal crystals of only moderately good quality were obtained by slow evaporation of a solution of cellobiose in an equal-volume mixture of water and ethylene chlorohydrin. Many other solvents and mixtures gave twinned crystals or small masses of crystals. Weissenberg photographs of 968 observed reflections, 83% of the recorded part of the reciprocal lattice, were taken with the use of the $\mathrm{Cu} K$ radiation. A sample of powdered Al was superimposed for calibration of the unit cell dimensions. The 'angular lag' method (Buerger, 1942) on higher levels about a or c indicated that $\beta=90^{\circ}$ within $\pm 0.5^{\circ}$ or less. Intensities, measured by visual comparison with a standard scale, were corrected graphically for Lorentz and polarization factors (Lu, 1943), but corrections for absorption and extinction were not made. The density of the crystals was measured by flotation in a mixture of benzene and methylene iodide, the refractive index of which was measured and correlated with the density of the solution (Midgley, 1951).

Crystallographic data are listed as follows:
cellobiose, $\mathrm{C}_{12} \mathrm{O}_{11} \mathrm{H}_{22}$, monoclinic,

$$
\begin{gathered}
a=10 \cdot 94 \pm 0 \cdot 02, b=13 \cdot 05 \pm 0 \cdot 05 \\
c=5 \cdot 11 \pm 0 \cdot 02 \AA, \beta=90^{\circ} \pm 0 \cdot 5^{\circ}, \\
V=730 \pm 7 \AA^{3}, D_{m}=1.55 \text { g.cm. } .^{-3} \\
\\
Z=2, \quad D_{x}=1 \cdot 556 \text { g.cm. } .^{-3},
\end{gathered}
$$

$F(000)=364, \mu=13 \cdot 8 \mathrm{~cm} .^{-1}$ for $\mathrm{Cu} K \alpha$ radiation. Systematic extinctions were observed only for $0 k 0$ when k is odd. Since the natural cellobiose is optically astive and the unit cell contains only two molecules, the space group is $P 2_{1}\left(C_{2}^{2}\right)$.

Structure determination

Preliminary study

The general molecular orientation and a decision in favor of the bent (Hermans, 1949) conformation instead of the extended (Meyer \& Misch, 1937) conformation resulted from a study of the three-dimensional Patterson function carried out at the Institut de Recherches Chimiques Appliquées in Paris, France, (Wunderlich, 1955). Trial and error methods, and the graphical superposition method of obtaining the three-dimensional minimum function (Buerger, 1951) failed to yield the structure. Hence the problem was set aside until, at the University of Minnesota, high speed computer techniques were developed specifically for repeated calculation of the minimum function in three dimensions (Rossmann, Jacobson, Hirshfeld \& Lipscomb, 1959). Even so, the usual sharpening procedure in which the expression $\exp \left(-4 \pi^{2} \sin ^{2} \theta / \lambda^{2} p\right) / \hat{f}^{2}$ was used failed to yield sufficient resolution for the
successful use of the minimum function. Excluding H, there are 46 atoms of C and O , producing some 2070 vectors, an average density of some $2 \cdot 8$ peaks $/ \AA^{3}$, ignoring accidental or symmetry induced coincidences. Further sharpening by the use of this exponential function promised to introduce false minima. Hence, we investigated a procedure which would remove much of the false minima, and yet leave the peaks highly sharpened.

The gradient Patterson function

As a one-dimensional example, let us represent the electron density $\varrho(x)$ by the curve in Fig. $1(a)$. The Patterson function, $P(u)=a \int_{0}^{1} \varrho(x) \varrho(x+u) d x$ from two such atoms is shown in Fig. $1(c)$. Various modification functions such as the exponential function are usually employed to sharpen the Patterson function. However, our approach is to consider other functions of x which change more rapidly than does $\varrho(x)$ as x changes. One such function is $a^{-1} d \varrho(x) / d x$, the gradient of f_{0} the electron density shown in Fig. 1(b). The gradient Patterson function is

$$
Q(u)=a^{-1} \int_{0}^{1} \frac{d \varrho(x)}{d x} \frac{d \varrho(x+u)}{d x} d x
$$

as shown in Fig. 1(c). This function in itself is of little greater value than a highly sharpened Patterson peak.

Fig. 1. (Curve a) The electron density function $\varrho(x)$; (Curve b) The sharpened Patterson peak $P(u)$ corresponding to $\varrho(x)$; (Curve c) The derivative function $d \varrho(x) / d x$; (Curve d) The gradient Patterson peak $Q(u)$ (see equation (2)); (Curve e) The scaled sum of $P(u)$ and $Q(u)$.

Indeed, in three dimensions it is the result of the already familiar $\left(\sin ^{2} \theta / \lambda^{2}\right)$ sharpening function on an ordinary Patterson peak. Where $Q(u)$ has negative regions $P(u)$ can be made to have positive regions approximately equal in magnitude, if an appropriate relative scaling is chosen. Hence the weighted sum of $P(u)$ and $Q(u)$ can be made into the very sharp peak shown in Fig. I(c), where very little residual regions occur around the sharp peaks. This rather simple modification made possible the solution of the cellobiose problem because of the increased resolution obtained thereby, and because of the accuracy required in the location of peaks if a number of consecutive superpositions are to be carried out successfully.

The extension to three dimensions in a nonorthogonal coordinate system is straightforward. The function $Q(u, v, w)$ is

$$
\begin{aligned}
& Q(u, v, w) \\
& \quad=V \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \nabla \varrho(x, y, z) \cdot \nabla \varrho(x+u, y+v, z+w) d x d y d z,
\end{aligned}
$$

where (Condon \& Odishaw, 1958) the gradient operator is $\nabla=\mathbf{a}^{*} \partial / \partial x+\mathbf{b}^{*} \partial / \partial y+\mathbf{c}^{*} \partial / \partial z$. The usual expression for $\varrho(x, y, z)$ in terms of $F_{n k l}$ then reduces $Q(u, v, w)$ to
$Q(u, v, w)=16 \pi^{2} / V \sum_{h} \sum_{k} \sum_{l}(\sin \theta / \lambda)^{2}\left|F_{n k l}\right|^{2} \cos 2 \pi \mathbf{H} . \mathbf{r}$, where

$$
\begin{aligned}
& \mathbf{H . \mathbf { r }}=h u+k v+l w \text { and } 4 \sin ^{2} \theta / \lambda^{2}=h^{2} \mathbf{a}^{*} \cdot \mathbf{a}^{*} \\
& +k^{2} \mathbf{b}^{*} \cdot \mathbf{b}^{*}+l^{2} \mathbf{c}^{*} \cdot \mathbf{c}^{*}+2 h l \mathbf{a}^{*} . \mathbf{c}^{*}+2 k l \mathbf{b}^{*} . \mathbf{c}^{*}+2 h k \mathbf{a}^{*} \cdot \mathbf{b}^{*}
\end{aligned}
$$

in an intermediate step. The function $P^{\prime}(u, v, w)$ is simply

$$
\begin{aligned}
& P^{\prime}(u, v, w)=k P(u, v, w)+Q(u, v, w) \\
& \quad=16 \pi^{2} / V \sum_{h} \sum_{k} \sum_{l}\left[k^{\prime}+(\sin \theta / \lambda)^{2}\right]\left|F_{h k l}\right|^{2} \cos 2 \pi \mathbf{H} . \mathbf{r}
\end{aligned}
$$

where $k^{\prime}=k / 16 \pi^{2}$ is chosen empirically to be about $\frac{1}{6}$ when the $\left|F_{k k l}\right|^{2}$ were modified by

$$
\exp \left(-4 \pi^{2} \sin ^{2} \theta / \lambda^{2} p\right) / \hat{f}^{2}
$$

More important than the neglect of anomalous scattering is the assumption that the same k^{\prime} will apply equally well to Patterson peaks due to atoms of different shapes.

It may be added parenthetically that the modification of $\left|F_{n k l}\right|^{2}$ in the calculation of $P^{\prime}(u, v, w)$ has added advantages in giving low weight to low order reflections susceptible to extinction and absorption, and in enhancing, relatively, interactions between heavy atoms at the expense of interactions between heavy atoms and light atoms, and especially light atom-light atom interactions. This effect is due to sharpening both by $1 / \hat{f}^{2}$ and by $(\sin \theta / \lambda)^{2}$. It is based on the relatively smaller decrease of the atomic scattering factor for heavy atoms as $\sin \theta$ increases. Of course the increased resolution of clusters of light atom interactions also makes this effect more apparent.

The $P^{\prime}(u, v, w)$ function was used by Spencer \& Lipscomb (1961) partly as a device for the location of $P \cdots P$ vectors in the presence of numerous $P \cdots C$ or $P \cdots F$ vectors and even more numerous $C \cdots C$, $F \cdots F$, and $C \cdots F$ vectors.

Analysis of the gradient Patterson function

The superposition procedure was not greatly different from the usual graphical methods, except that several series of three-dimensional superpositions were carried out on the UNIVAC SCIENTIFIC 1103 computer before a recognizable structure emerged. We are by no means sure why the several false starts failed to yield a structure, but suspect that there are types of ambiguities well worth further investigation. In general, the choice of a Harker peak for the first superposition has the advantages (a) that it is a vector between symmetry related atoms and hence of known height if resolved, (b) that only one or two coordinates need to be found, and, most important, (c) the position of a symmetry element is simultaneously fixed. Subsequent superpositions may then be carried out on groups of symmetry-related atoms. Because numerous three-dimensional superpositions can be tried in a relatively short time, very complex structures can be solved by this method in spite of the difficulty in location of Harker peaks, which are frequently obscured by larger non-Harker peaks. The distribution of $1.5 \AA$ vectors around the origin indicated that some bonds were roughly parallel to b while others made angles of about 30° with a. A choice was then made of a group of three small peaks, representing bonded atoms, such as A, B, and C of Fig. 2(a) (see also Fig. 2(b)) in order to identify a Harker peak, A. Further superpositions were made on peak B and its symmetry related atom, and then on peak C and its symmetry related atom. Thus each series consisted of five superpositions in each of which the three-dimensional minimum function was computed. The series just described is the only one which gave a recognizable puckered six-membered ring with some of the attached hydroxyl oxygen atoms.
As criteria in recognizing part of the molecule from the other peaks and fragments of peaks left by chance after five superpositions and from other parts of the molecule, spheres of $1.5 \AA$ and $2.5 \AA$ representing nearest neighbor and next nearest neighbor distances respectively, were drawn. One ring and its attached groups were easily located by noting those peaks occurring at the intersection of two spheres. A glance at the final structure will suggest the many places where six-membered rings almost occur, but perhaps only those who have solved other carbohydrate structures will sympathize fully with the problems of ambiguities.

When one ring and its attached groups were located, these atoms, only about half of those in the molecule, were used to compute the phases for the projection along [001] (Fig. 3). The second ring was located

(b)

Fig. 2. (a) The function $P^{\prime}(u, v, 12 / 30)$ for cellobiose; (b) The usual sharpened Patterson section $P(u, v, 12 / 30)$ for cellobiose. The contours in both figures are drawn at intervals of 10 arbitrary units, the lowest contour being 10 units.

Fig. 3. Projection of the electron density along z, computed after solution of the three-dimensional problem, showing the bond lengths.
surprisingly easily, and then least-squares refinement of the $h k 0$ data led to $R=\Sigma| | F_{o}\left|-\left|F_{c}\right|\right| / \Sigma\left|F_{o}\right|=0.22$ at this stage. The z coordinates, available from the final superposition map, were then introduced and three-dimensional refinement was carried out by leastsquares procedures. After nine successive refinements in the diagonal approximation, during which $R_{h k l}$ fell from 0.39 to $0 \cdot 27, R_{h k 0}$ fell from $0 \cdot 22$ to $0 \cdot 16$, and $r_{h k l}=\Sigma w\left(\left|F_{o}\right|^{2}=\left|F_{c}\right|^{2}\right)^{2} / \Sigma w\left|F_{o}\right|^{4}$ decreased from 0.43 to $0 \cdot 12$, a three-dimensional difference map was computed. Many small shifts in coordinates of C and O were indicated, but 17 of the 22 H atoms were also
located. Inclusion of the 12 most clearly indicated H atoms reduced $R_{h k l}$ to $0 \cdot 20$. Four cycles of threedimensional refinement on the I.B.M. 704 with the use of the full matrix in the program written by Busing \& Levy ($1959 a$) then reduced $R_{h k l}$ to 0.175 and $r_{h k l}$ to 0.077 . A final three-dimensional difference map, computed with the aid of the program by Shoemaker \& Sly (1959) fixed the positions of 12 of the 14 H atoms attached to C , and 7 of the 8 H atoms in hydrogen bonds, the latter being somewhat less well defined. Final values are $R_{h k l}=0 \cdot 17, R_{h k 0}=0.13$ and $r_{h k l}=0.074$, for the final parameters including 14 H atoms most

Table 2．Observed and calculated structure factors
Upper limits of absent reflections are starred．

$\begin{array}{lll}\text { Now } \\ \therefore . & j & \vdots \\ i & i & i\end{array}$
 ษ゙

$\underset{i}{\infty}$

 ぎ

$\underset{\sim}{H} \stackrel{\sim}{\sim}$

Table l(a). Atomic positional and temperature parameters

	x	y	z	$B\left(\AA^{2}\right)$
C_{1}	0.748	$0 \cdot 307$	0.017	1.44
C_{2}	0.731	0.433	-0.015	1.94
C_{3}	0.672	0.474	$0 \cdot 232$	$2 \cdot 39$
C_{4}	0.553	C. 424	$0 \cdot 304$	$2 \cdot 27$
C_{5}	0.563	$0 \cdot 303$	$0 \cdot 273$	0.89
C_{6}	0.443	$0 \cdot 244$	$0 \cdot 308$	$2 \cdot 43$
C_{1}^{\prime}	0.957	0.011	-0.470	$2 \cdot 35$
C_{2}	0.827	$0 \cdot 000$	-0.365	$2 \cdot 44$
C_{3}^{\prime}	0.767	0.097	-0.320	$2 \cdot 11$
C_{4}^{\prime}	0.853	$0 \cdot 175$	-0.180	$1 \cdot \mathrm{C} 6$
C_{5}^{\prime}	0.979	$0 \cdot 179$	-0.291	$1 \cdot 24$
C_{6}^{\prime}	1.075	0.234	-0.119	$2 \cdot 01$
O_{2}	0.847	0.480	-0.073	$2 \cdot 57$
O_{3}	$0 \cdot 654$	0.585	$0 \cdot 212$	1.83
O_{4}	0.503	$0 \cdot 453$	$0 \cdot 525$	$1 \cdot 84$
O_{6}	$0 \cdot 456$	$0 \cdot 143$	$0 \cdot 225$	1.83
O_{5}	$0 \cdot 630$	0.271	$0 \cdot 057$	$1 \cdot 81$
O_{1}^{\prime}	$0 \cdot 013$	-0.084	-0.511	$2 \cdot 63$
O_{2}^{\prime}	0.753	-0.059	-0.539	$2 \cdot 38$
O_{3}^{\prime}	$0 \cdot 658$	0.080	$-0 \cdot 184$	$2 \cdot 90$
O_{6}^{\prime}	1-183	0.227	-0.267	$2 \cdot 35$
O_{5}^{\prime}	1.023	$0 \cdot 073$	-0.311	1.69
O	$0 \cdot 803$	$0 \cdot 278$	-0.202	0.97

Table $\mathbf{1}(b)$. Coordinates of the hydrogen atoms which were located from the difference map

		y	z
H_{1}	0.77	0.31	0.14
H_{2}	0.67	0.44	-0.20
H_{3}	0.72	0.48	0.38
H_{4}	0.51	0.41	0.15
H_{5}^{\prime}	0.59	0.29	0.37
H_{1}^{\prime}	0.97	0.06	-0.65
H_{2}^{\prime}	0.83	-0.03	-0.25
H_{3}^{\prime}	0.76	0.14	-0.48
H_{4}^{\prime}	0.86	0.14	-0.03
H_{5}^{\prime}	0.98	0.13	-0.47
$\mathrm{H}_{6}^{\prime}(1)$	1.07	0.18	0.06
$\mathrm{H}_{6}^{\prime}(2)$	1.02	0.32	-0.06
$\mathrm{H}_{(2)}^{\prime}\left(\mathrm{O}_{1}^{\prime}\right)$	1.08	-0.07	0.35
$\mathrm{H}\left(\mathrm{O}_{3}^{\prime}\right)$	0.63	0.14	-0.10
$\mathrm{H}\left(\mathrm{O}_{6}^{\prime}\right)$	1.20	0.30	-0.37
$\mathrm{H}\left(\mathrm{O}_{2}\right)$	0.84	0.52	0.05
$\mathrm{H}\left(\mathrm{O}_{3}\right)$	0.69	0.65	0.16
$\mathrm{H}\left(\mathrm{O}_{4}\right)$	0.52	0.52	0.52
$\mathrm{H}\left(\mathrm{O}_{6}\right)$	0.42	0.14	0.10

reliably located. Final atomic positions for C and O (Table $l(a)$) are obtained from this final refinement, but the H atom positions are those obtained from the second three-dimensional difference map. Standard deviations, computed from the full matrix, are

$$
\sigma_{x}=\sigma_{y}=\sigma_{z}=0.020 \AA, \sigma_{B}=0.4 \AA^{2} \text { for } \mathrm{C}
$$

and

$$
\sigma_{x}=\sigma_{y}=\sigma_{z}=0.014 \AA, \sigma_{B}=0.3 \AA^{2} \text { for } 0
$$

Observed and calculated structure factors are listed in Table 2, and an analysis of R values is listed in Table 3. Atomic scattering curves were those of Hoerni \& Ibers (1954) for C and O, and the curve of McWeeny (1951) for H .

Table 3. Values of $\Sigma\left|\left|F_{o}\right|-\left|F_{c}\right|\right| / \Sigma\left|F_{o}\right|$ for different classes of reflections

| | Range of
 $\sin \theta$ | | | R |
| ---: | :---: | :---: | :---: | :---: | | Number of |
| :---: |
| reflections |

Discussion of the structure

The accepted bonding arrangement of the cellobiose molecule is confirmed. There are two 'chair' form β-glucose residues linked by an oxygen bridge in the 1:4 positions. The bond lengths, shown in Table 4, are not particularly satisfactory, perhaps owing to the poor quality of the crystals, and in spite of the low calculated standard deviations of $0.03 \AA$ for $\mathrm{C}-\mathrm{C}$, $0.025 \AA$ for $\mathrm{C}-\mathrm{O}$ and 0.02 for $\mathrm{O}-\mathrm{O}$ (Busing \& Levy, $1959 b$). Thus the $\mathrm{C}_{4}-\mathrm{O}_{4}$ bond distance of $1.30 \AA$ is five times its standard deviation and the $\mathrm{C}_{1}^{\prime}-\mathrm{O}_{5}^{\prime}$ bond distances of $1 \cdot 35 \AA$ is three times its standard deviation from the more usual $\mathrm{C}-\mathrm{OH}$ distance of about $1.43 \AA$. There are no such problems in the corresponding distances in the other β-glucose residue, and yet there are certainly no indications from either the difference maps of the behavior of temperature factors in many cycles of least-squares refinement that these atoms are incorrectly placed. Perhaps it is only that the laws of probability have caught up with us, for we hardly believe that these shortenings are real.

Table 4. Interatomic distances

$\mathrm{C}_{1}-\mathrm{C}_{2}$	$1.51 \AA$	$\mathrm{C}_{1}^{\prime} \mathrm{C}_{2}^{\prime}$	1.53 A
$\mathrm{C}_{2}-\mathrm{C}_{3}$	1.51	$\mathrm{C}_{2}^{\prime}-\mathrm{C}_{3}^{\prime}$	$1 \cdot 45$
$\mathrm{C}_{3}-\mathrm{C}_{4}$	1.51	$\mathrm{C}_{3}^{\prime}-\mathrm{C}_{4}^{\prime}$	1.55
$\mathrm{C}_{4}-\mathrm{C}_{5}$	1.58	$\mathrm{C}_{4}^{\prime}-\mathrm{C}_{5}^{\prime}$	1.50
$\mathrm{C}_{5}-\mathrm{C}_{6}$	1.54	$\mathrm{C}_{5}^{\prime}-\mathrm{C}_{6}^{\prime}$	1.54
$\mathrm{C}_{1}-\mathrm{O}$	1.38 A	$\mathrm{C}_{1}^{\prime}-\mathrm{O}_{1}^{\prime}$	1.40 §
$\mathrm{C}_{1}-\mathrm{O}_{5}$	$1 \cdot 45$	$\mathrm{C}_{1}^{\prime}-\mathrm{O}_{5}^{\prime}$	1.35
$\mathrm{C}_{2}-\mathrm{O}_{2}$	$1 \cdot 44$	$\mathrm{C}_{2}^{\prime}-\mathrm{O}_{2}^{\prime}$	$1 \cdot 43$
$\mathrm{C}_{3}-\mathrm{O}_{3}$	1-47	$\mathrm{C}_{3}^{\prime}-\mathrm{O}_{3}^{\prime}$	$1 \cdot 40$
$\mathrm{C}_{4}-\mathrm{O}_{4}$	$1 \cdot 30$	$\mathrm{C}_{4}^{\prime}-0$	$1 \cdot 46$
$\mathrm{C}_{5}-\mathrm{O}_{5}$	1.38	$\mathrm{C}_{5}^{\prime}-\mathrm{O}_{5}^{\prime}$	1.47
$\mathrm{C}_{6}-\mathrm{O}_{6}$	1.38	$\mathrm{C}_{6}^{\prime}-\mathrm{O}_{6}^{\prime}$	$1 \cdot 41$

Intramolecular hydrogen bond

$$
\mathrm{O}_{3}^{\prime} \cdots \mathrm{O}_{5} \quad 2 \cdot 80 \AA
$$

Intermolecular hydrogen bonds

$\mathrm{O}_{2} \cdots \mathrm{O}_{5}^{\prime}$	$2 \cdot 71 \AA$	$\mathrm{O}_{4} \cdots \mathrm{O}_{6}$	$2 \cdot 85 \AA$
$\mathrm{O}_{2} \cdots \mathrm{O}_{1}^{\prime}$	$2 \cdot 75$	$\mathrm{O}_{4} \cdots \mathrm{O}_{2}^{\prime}$	$2 \cdot 80$
$\mathrm{O}_{3} \cdots \mathrm{O}_{6}$	$2 \cdot 70$	$\mathrm{O}_{2}^{\prime} \cdots \mathrm{O}_{6}^{\prime}$	$2 \cdot 78$
$\mathrm{O}_{3} \cdots \mathrm{O}_{6}^{\prime}$	$2 \cdot 80$		

The bond angles, with calculated standard deviations of 1.7°, do not present such a problem. It is especially interesting that the two ring oxygen atoms form bonds at angles of $117 \cdot 3^{\circ}$ and $115 \cdot 2^{\circ}$, and that the bridge oxygen has a bond angle of 117.5°. Although the angles in the aliphatic ethers (Sutton et al., 1958), in sucrose sodium bromide dihydrate (Beevers \& Cochran, 1947), and in α-glucose (McDonald \& Beevers, 1952) are closer to the tetrahedral angle, it may be noted that the angle at the ring oxygen atom in x-rhamnose monohydrate is 120° (McGeachin \& Beevers, 1957). On the other hand the bridge oxygen atom in sucrose is only $104 \cdot 7^{\circ}$! Nevertheless, we feel that the bond angles, especially those about 0 atoms found here for cellobiose are highly relevant to models of cellulose, in view of the fact that previously only tetrahedral angles have been assumed. The length of the cellobiose molecule is highly relevant as an overall criterion of the bond angles and the correspondence between cellobiose and cellulose: the

Table 5. Bond angles

$\mathrm{C}_{2}-\mathrm{C}_{1}-\mathrm{O}$	$108 \cdot 9^{\circ}$	$\mathrm{C}_{2}^{\prime}-\mathrm{C}_{1}^{\prime}-\mathrm{O}_{1}^{\prime}$	$112 \cdot 1^{\circ}$
$\mathrm{C}_{2}-\mathrm{C}_{1}-\mathrm{O}_{5}$	$110 \cdot 7$	$\mathrm{C}_{2}^{\prime}-\mathrm{C}_{1}^{\prime} \mathrm{O}_{5}^{\prime}$	$110 \cdot 0$
$\mathrm{O}-\mathrm{C}_{1}-\mathrm{O}_{5}$	$109 \cdot 8$	$\mathrm{O}_{1}^{\prime}-\mathrm{C}_{1}^{\prime}-\mathrm{O}_{5}^{\prime}$	$112 \cdot 2$
$\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}$	$108 \cdot 4$	$\mathrm{C}_{1}^{\prime}-\mathrm{C}_{2}^{\prime}-\mathrm{C}_{3}^{\prime}$	$113 \cdot 5$
$\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{O}_{2}$	$109 \cdot 1$	$\mathrm{C}_{1}^{\prime}-\mathrm{C}_{2}^{\prime} \mathrm{O}_{2}^{\prime}$	$111 \cdot 0$
$\mathrm{C}_{3}-\mathrm{C}_{2}-\mathrm{O}_{2}$	$1113 \cdot 5$	$\mathrm{C}_{3}^{\prime}-\mathrm{C}_{2}^{\prime} \mathrm{O}_{2}^{\prime}$	$108 \cdot 6$
$\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}$	$114 \cdot 7$	$\mathrm{C}_{2}^{\prime}-\mathrm{C}_{3}^{\prime} \mathrm{C}_{4}^{\prime}$	$111 \cdot 3$
$\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{O}_{3}$	$110 \cdot 3$	$\mathrm{C}_{2}^{\prime}-\mathrm{C}_{3}^{\prime}-\mathrm{O}_{3}^{\prime}$	$109 \cdot 3$
$\mathrm{C}_{4}-\mathrm{C}_{3}-\mathrm{O}_{3}$	$109 \cdot 7$	$\mathrm{C}_{4}^{\prime}-\mathrm{C}_{3}^{\prime}-\mathrm{O}_{3}^{\prime}$	$1113 \cdot 1$
$\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}$	$110 \cdot 4$	$\mathrm{C}_{3}^{\prime}-\mathrm{C}_{4}^{\prime}-\mathrm{C}_{5}^{\prime}$	$114 \cdot 3$
$\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{O}_{4}$	$116 \cdot 8$	$\mathrm{C}_{3}^{\prime}-\mathrm{C}_{4}^{\prime}-\mathrm{O}$	$109 \cdot 6$
$\mathrm{C}_{5}-\mathrm{C}_{4}-\mathrm{O}_{4}$	$113 \cdot 3$	$\mathrm{C}_{5}^{\prime}-\mathrm{C}_{4}^{\prime}-\mathrm{O}$	$106 \cdot 5$
$\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{C}_{6}$	$115 \cdot 3$	$\mathrm{C}_{4}^{\prime}-\mathrm{C}_{5}^{\prime} \mathrm{C}_{6}^{\prime}$	$115 \cdot 4$
$\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{O}_{5}$	$114 \cdot 4$	$\mathrm{C}_{4}^{\prime}-\mathrm{C}_{5}^{\prime}-\mathrm{O}_{5}^{\prime}$	$107 \cdot 0$
$\mathrm{C}_{6}-\mathrm{C}_{5}-\mathrm{O}_{5}$	$113 \cdot 2$	$\mathrm{C}_{5}^{\prime}-\mathrm{C}_{5}^{\prime} \mathrm{O}_{5}^{\prime}$	$105 \cdot 0$
$\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{O}_{6}$	$110 \cdot 8$	$\mathrm{C}_{5}^{\prime}-\mathrm{C}_{6}^{\prime}-\mathrm{O}_{6}^{\prime}$	$109 \cdot 0$

	Ring oxygen bond angles	
$\mathrm{C}_{1}-\mathrm{O}_{5}-\mathrm{C}_{5}$	117.3	$\mathrm{C}_{1}^{\prime}-\mathrm{O}_{5}^{\prime}-\mathrm{C}_{5}^{\prime}$
	Bridge oxygen bond angle	
	$\mathrm{C}_{1}-\mathrm{O}-\mathrm{C}_{4}^{\prime}$	117.5°

Hydrogen bond angles

$\mathrm{C}_{2}-\mathrm{O}_{2}-\mathrm{O}_{1}^{\prime}$	$121 \cdot 6^{\circ}$	$\mathrm{C}_{3}^{\prime}-\mathrm{O}_{1}^{\prime}-\mathrm{O}_{2}$	$102 \cdot 5^{\circ}$
$\mathrm{C}_{2}-\mathrm{O}_{2}-\mathrm{O}_{5}^{\prime}$	$124 \cdot 9$	$\mathrm{C}_{2}^{\prime}-\mathrm{O}_{2}^{\prime} \mathrm{O}_{4}^{\prime}$	$121 \cdot 3$
$\mathrm{O}_{1}^{\prime}-\mathrm{O}_{2}-\mathrm{O}_{5}^{\prime}$	$114 \cdot 5$	$\mathrm{C}_{2}^{\prime}-\mathrm{O}_{2}^{\prime}-\mathrm{O}_{6}^{\prime}$	$124 \cdot 6$
$\mathrm{C}_{3}-\mathrm{O}_{3}-\mathrm{O}_{6}$	$113 \cdot 7$	$\mathrm{O}_{4}-\mathrm{O}_{2}^{\prime}-\mathrm{O}_{6}^{\prime}$	$107 \cdot 9$
$\mathrm{C}_{3}-\mathrm{O}_{3}-\mathrm{O}_{6}^{\prime}$	$131 \cdot 6$	$\mathrm{C}_{3}^{\prime}-\mathrm{O}_{3}^{\prime}-\mathrm{O}_{5}$	$99 \cdot 9$
$\mathrm{O}_{6}-\mathrm{O}_{3}-\mathrm{O}_{6}^{\prime}$	$99 \cdot 0$	$\mathrm{C}_{6}^{\prime}-\mathrm{O}_{6}^{\prime}-\mathrm{O}_{3}$	$111 \cdot 7$
$\mathrm{C}_{4}-\mathrm{O}_{4}-\mathrm{O}_{6}$	$124 \cdot 5$	$\mathrm{C}_{6}^{\prime}-\mathrm{O}_{6}^{\prime} \mathrm{O}_{2}^{\prime}$	$121 \cdot 8$
$\mathrm{C}_{4}-\mathrm{O}_{4}-\mathrm{O}_{2}^{\prime}$	$115 \cdot 3$	$\mathrm{O}_{3}-\mathrm{O}_{6}^{\prime}-\mathrm{O}_{2}^{\prime}$	$124 \cdot 1$
$\mathrm{O}_{6}-\mathrm{O}_{4}-\mathrm{O}_{2}^{\prime}$	$101 \cdot 2$	$\mathrm{C}_{5}-\mathrm{O}_{5}-\mathrm{O}_{3}^{\prime}$	$132 \cdot 4$
$\mathrm{C}_{6}-\mathrm{O}_{6}-\mathrm{O}_{3}$	$109 \cdot 0$	$\mathrm{C}_{1}-\mathrm{O}_{5}-\mathrm{O}_{3}^{\prime}$	$102 \cdot 6$

$\mathrm{O}_{1}^{\prime} \cdots \mathrm{O}_{4}$ distance of $10 \cdot 27 \AA$ in cellobiose corresponds quite well to the fiber axis of $10 \cdot 3 \AA$ in all forms of cellulose.
The intramolecular hydrogen bond of $2 \cdot 80 \AA$ appears to be of great importance in establishing the relative orientations of the two rings, relatively twisted from one another by very roughly 26°. This distance occurs between the hydroxyl group attached to C_{3}^{\prime} of one glucose residue and the ring oxygen O_{5} of the other residue. In sucrose (Beevers \& McDonald, 1952) a similar intramolecular hydrogen bond occurs between the ring oxygen of the furanose residue and the hydroxyl oxygen atom O_{4} of the glucose residue. This hydrogen bond has been presumed to exist in chitin (Carslstrom, 1957), in native cellulose (I) (Liang \& Marchessault, 1959), and in mercerized cellulose (II) (Marchessault \& Liang, 1960; Petitpas \& Méring, 1956). Interestingly, the cellobiose molecule is rather close to the 'bent and twisted' conformation considered by Marchessault \& Liang (1960) for cellulose II, but rejected by them in favor of the 'bent' form on the basis of a comparison of predicted and observed infrared absorption bonds. Both the 'straight' and 'bent' forms of cellulose, as proposed by most previous workers, have the glucose residues related by a twofold screw axis. Furthermore, the cylindrically symmetrical distribution function obtained by Fourier inversion of the X-ray diffraction data of cellulose I (Norman, 1954), suggests that the successive β-glucose residues along the fiber axis are indeed related by a two-fold screw axis. Their studies raise the possibility that the units of cellulose II are not really identical to those in cellobiose, but, nevertheless, they may be very closely related. However, re-examination of these data in the light of the structure found here for cellobiose would at least seem desirable.

Intermolecular hydrogen bonds are shown in Table 4. Only the bridge oxygen atom takes no part in the hydrogen bond network, while O_{5} and O_{5}^{\prime} of the rings are acceptors for intramolecular and intermolecular hydrogen bonds, respectively. Omitting the intramolecular hydrogen bond, there is a three-dimensional network which clearly explains the hardness and brittleness of the crystals, and which accounts for the absence of cleavage planes. The seven intermolecular hydrogen bonds (Fig. 4) use all of the remaining hydroxyl hydrogen atoms, and all are shorter than $2 \cdot 9 \AA$. The only two other distances less than $3 \cdot 25 \AA$ in the structure are $\mathrm{O}_{4} \cdots \mathrm{O}_{3}^{\prime}=2.99 \AA$, which can be rejected as a possible hydrogen bond because of the acute angles with $\mathrm{O}_{4} \cdots \mathrm{O}_{2}^{\prime}$ and $\mathrm{O}_{4} \cdots \mathrm{O}_{6}$, and $\mathrm{O}_{1}^{\prime}-\mathrm{O}=$ $3.08 \AA$, which can likewise be rejected because the angle $\mathrm{C}_{1}^{\prime}-\mathrm{O}_{1}^{\prime}-\mathrm{O}$ would be very large and because of steric interference with one of the H atoms attached to C_{6}^{\prime}. One set of hydrogen bonds $\mathrm{O}_{2} \cdots \mathrm{O}_{1}^{\prime}$ and $\mathrm{O}_{2} \cdots \mathrm{O}_{5}^{\prime}$ joins molecules in successive unit cells along the c axis, and a second set forms an infinite helical chain of hydrogen bonds with the helical axis along b.

Fig. 4. Projection of the atomic positions along z, showing the hydrogen bonds as dotted lines.

We wish to thank the National Institutes of Health and the Air Force Office of Scientific Research for support of this research.

References

Beevers, C. A. \& Cochran, W. (1947). Proc. Roy. Soc. A, 190, 257.
Beevers, C. A. \& McDonald, T. T. R. (1952). Acta Cryst. 5, 689.
Bjørnhaug, A., Ellefsen, Ø. \& Tønnesen, B. A. (1953). Norsk Skogindustri, 7, 171.
Buerger, M. J. (1942). X-ray Crystallography, p. 377. New York: Wiley.
Buerger, M. J. (1951). Acta Cryst. 4, 531.
Busing, W.R. \& Levy, H.A. (1959a). Report No. 59-4-37, Oak Ridge National Laboratory.
Busing, W.R. \& Levy, H.A. (1959b). Report No.59-12-3, Oak Ridge National Laboratory.
Carlstron, D. (1957). J. Biophys. Biochem. Cytol., 3, 669.

Condon, E. U. \& Odishaw, H. (1958). Handbook of Physics, p. 1-106. New York: McGraw-Hill.
Ellefsen, Ø., Gjønnes, J. \& Norman, N. (1959). Acta Chem. Scand. 13, 853.
Hermans, P. H., Booys, J. de, \& Maan, C. (1943). Kolloidschr. 102, 169.
Hermans, P.H. (1949). Physics and Chemistry of Cellulose Fibers, p. 13. New York: Elsevier.
Hoerni, J. A. \& Ibers, J. A. (1954). Acta Cryst. 7, 744.
Jacobson, R. A., Wunderlich, J. A. \& Lipscomb, W. N. (1959). Nature, Lond. 184, 1719.

Liang, C. Y. \& Marchessault, R. H. (1959). J. Polym. Sci. 37, 385.
Lipson, H. \& Cochran, W. (1953). The Determination of Crystal Structures, p. 173. London: Bell.
Lu, C. (1943). Rev. Sci. Instrum. 14, 331.
Marchessault, R. H. \& Liang, C. Y. (1960). J. Polym. Sci. 43, 71.
Marrinan, H. J. \& Mann, J. (1956). J. Polym. Sci. 21, 301.

McDonald, T. T. R. \& Beevers, C. A. (1952). Acta Cryst. 5, 654.
McGeachin, H. McD. \& Beevers, C. A. (1957). Acta Cryst. 10, 727.
McWeeny, R. (1951). Acta Cryst. 4, 513.
Meyer, K. H. \& Misch, L. (1937). Helv. Chim. Acta, 20, 232.

Midgley, H. G. (1951). Acta Cryst. 4, 565.
Norman, N. (1954). Medd. Univ. Fys. Inst., Oslo, nr. 219.
Petitpas, T. \& Mering, J. (1956). C. R. Acad. Sci., Paris, 243, 47.
Pierce, F. T. (1946a). Trans. Faraday Soc. 42, 545.
Pierce, F. T. (1946b). Trans. Faraday Soc. 42, 460.
Rossmann, M. G., Jacobson, R. A., Hirshfeld, F. L. \& Lipscomb, W. N. (1959). Acta Cryst. 12, 530.
Shoemaker, D. P. \& Sly, W. G. (1959). Massachusetts Institute of Technology, Manual of MIFRI.
Spencer, C. J. \& Lipscomb, W. N. (1961). Acta Cryst. (In press.)
Sutton, L. E. et al. (1958). Tables of Interatomic Distances and Configurations in Molecules and Ions. London: The Chemical Society.
Wunderlich, J. A. (1955). C. R. Acad. Sci., Paris, 240, 1450.

Syntheses for the Deconvolution of the Patterson Function. Part IV. Refinement of the Theory and a General Comparison of the Various Syntheses

By R. Srinivasan
Department of Physics, University of Madras, Madras 25, India

(Received 2 June 1960)

Abstract

The details of the γ class of syntheses are given in this paper. The theory of the standard syntheses namely, $|F|, \exp [i \alpha], \exp [2 i \alpha], 1 /|F|$ and $1 / F$ is refined to the next higher order of approximation. The results are then applied to work out the ratio ϱ of the strength of the peak at the unknown to that at the known atomic positions in the $\alpha, \beta, \gamma, \alpha^{\prime}, \beta^{\prime}$ and γ^{\prime} syntheses. Finally a general comparison of the various syntheses is made using the above ratio as the criterion for judging their relative merits.

1. Introduction

In Part I (Ramachandran \& Raman, 1959) of this series were outlined the general principles involved in certain classes of syntheses which were proposed for developing a structure from its Patterson function when a part of it is known. The more detailed mathematical aspects of the problem were presented in Part II (Raman, 1959) and the treatment there
pertained to the general case of a non-centrosymmetric structure. The extension of the theory to the centrosymmetric case was considered in Part III (Raman, 1961).

Two of the classes, namely α and β were discussed at length in the earlier parts and it was pointed out that the third class, namely the γ, was likely to have properties in between the α and β classes. The existence

[^0]: * Present address: Chemical Research Laboratories, Commonwealth Scientific and Industrial Research Organisation, P.O. Box 433l, G.P.O., Melbourne, Australia.

